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Tutorial Overview |

® Motivation

® Principle of sorting

® \isual feature vectors

® Dimensionality reduction

® |mage sorting algorithms

® Metrics for evaluating sorted arrangements

® A new quality metric for sorted grid layouts



Tutorial Overview Il

® Human evaluation of sorted arrangements

® | inear Assignment Sorting

® Performance evaluation for visually sorted grid layouts
® Sorting with spatial constraints

® \isual exploration & navigation

e Summary Q&A



Motivation for Sorting Images




Increasing Numbers of Photos

1 ,720,000,000,000 Number Of Photos Taken Each Year

phOtOS taken (in trillions of photos)
worldwide in 2022

2T
1.5T

1T

The average user has
around

2,100 photos

on the smartphone or M [N NN NN SN S b -

Number of images
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Stock Agencies with Millions of Images

Shutterstock
Adobe Stock
Alamy
Depositphotos
Dreamstime
123RF

iStock

Bigstock

Canva

Gettylmages
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Yaylmages

Stockphotosecrets
Stocksy I
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(uploaded to Flickr per day)

350,000 Images

24HRS in Photos by Erik Kessels

photo: www.schabel-kultur-blog.de
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Agencies with Millions of Images

® NO one has ever
seen all the images.

e BT oG O

® |mpossible to get v T 253
an overview d L W PRI S

e "Exploring” a search result
Scrolling through
endless, unstructured
lists of images
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Men > Sale > Clothing >

Men’s Jeans on Sale

Only a tiny fraction of a product type is shown on e-commerce websites

Sale :
Sortby \/ || Price f] ™ || Size \v

Clothing

Brand v

Length v Sustainability v Colour Vv

T-shirts & Polos Savings VvV Fit \v/ Shape Vv

Trouser rise v/

2 Show all filters

Shirts

10192 items

10,192 items @

Jeans D Sponsored

Sweatshirts & Hoodies

Skinny fit
Slim fit
Straight leg
Tapered fit
Relaxed & Loose Fit
Bootcut
Denim shorts
Trousers
Shorts
Sportswear

Tracksuits & Joggers

Suits & Tailoring

Sponsored

Jackets <. =

) Sponsored

Coats CHASIN' CHASIN' CHASIN'

Kistwaar CARTER - Slim fit jeans - blue CROWN BULLS - Straight leg jeans - black EGO SATOSH - Slim fit jeans - blue
59,95 € 49,95 € 59,95 €

Underwear & Socks Originally: #9:95-€ -50% Originally: $19-95-€ -58% Originally: 169956 -45%

Swimwear

[« ¥ PR

Loungewear & Sleepwear
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Human perception is limited to few images




800 Ima es (CD covers)
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18 Images

Only 10-20 images can be perceived at once.
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Image Sorting

® |mages sorted by similarity enables more images to be
viewed simultaneously.

e Useful for stock photo agencies or e-commerce
applications.

® \isually sorted grid layouts attempt to arrange images
so that their proximity on the grid corresponds as closely
as possible to their similarity.



256 IKEA kitchenware images
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Visual sorting helps to view more images
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Principle of Sorting




"Normal” Sorting

Sorting: Arranging scalars by their value =
Projecting 1D data optimally onto a line or 1D grid:

6 5 2 8 3

AR

2 3 5 6 8

The number of possible arrangements
grows factorially with the number of data points!



"Extended” Sorting

Mapping / projecting data from
Source space — Target space
Source dimension = Target dimension

Target space attributes:

wrapped layout (torus)?
no / yes

quantized positions (grid)?
no / yes
densely filled?
no / yes
additional constraints?



Sorting Types

® 1D = 1D
Sorting numbers
4,1, 9, 3, 8

® 1D = 2D
Sorting the numbers
1-64 on a 8x8 grid
Nno Wrap

® 3D - 1D
Sorting RGB colors
on 3 line (a grid)

18

15

11

8 6

22

19

16

13| 9

28

26

24

200 17

14

12

10

35

34

32

29 27

25

23

21

42

40

38 36

33

31

30

55

53

51

48 45

41

39

37

61

60

58

56 52

49

46

43

64

63
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50

47




Sorting Types

1 23Ms 67 7 4 Ei
® /84D — 2D 0 1 22456789 ¥ 'w
; : O 1 23 45 6789 .- :
Projecting 0123456 i e
1 Q| 2346 67 87 — ‘lkﬂg?"n
MNIST images P i e S AR
' Ol 23 %5 467%19 ' 2
(28X28 pIXG|S) ©t 23954489 g
on a 2D plane o545 L5 ¢q .
0/ 234 5 6 7 ¢ 9

® 3D — 2D
Sorting
/729 RGB colors
on a 27x27 qgrid

wrapped non wrapped



® HD — 2D
Projecting
Images onto
3 2D plane

® HD — 2D
Arranging
Images on
3 2D qrid




Evaluating Sortings |

1D Sorting:
"correct” sorting: 1£3l4i8L9
J— Path length
N T~ )
0‘12.3:1567.8;1011 =2+1+4+1=8

Incorrect sorting extends the path through the data

"'wronqg" sorting: 1, 4, 3, 9, 8

Path length
oS L = 3+1+6+1 = 11

e o e o
0 1 2 3 4 5 6 7 8 9 10 11
N N




Evaluating Sortings ||

Normal 1D Sorting (non wrapped): 143dhalgdg
d

Derived from the Root Mean Square (RMS)
D, represents the average magnitude of the neighbor
distances of the n data points

. n—l1 % i n—2 flr»
1 1 2 1 P d: = f. — f;
RMS = (55 :el-) D, = (n — ;zoj leAl ) i = fi — fin

1=0

A 1D sorting is "optimal” if D, is minimal.
For any p > 0 the optimal order the same.



e \What happens for wrapped sortings?
(Sorting on a torus)

e \What is different for target dimensions = 27?

® How to choose p?

® How to derive a general metric for
evaluating sorted arrangements?



Sorting on a Torus

1D Sorting (wrapped): Ciiahalalol 1
Y 9/ 3

. n—1 %
1 |

D, = (; D ”di|p) d; = fi — Ji+1)%n 8 —4
=0

Depending on p the "optimal” sorting differs!



Sorting on a Torus p=1

Sorting: 1, 3, 4, 8, 9,
'S aE

0 1 2 3 45 6 7 8 9 10 11 D= (2+1+4+1+8)/5= 3.2
'\ /

Sorting: 1, 4, 9, 8, 3,
T S R Dy = (3+5+1+5+2)/5=3.2

] e
o 1 2 3 4 5 6 7 8 9 10 11

) e e N

Sorting: 1, 4, 3, 9, 8,

e

.
o 1 2 3 4 5 6 7 8 9 10 1l

A N




Sorting on a Torus p=2

Sorting: 1, 3, 4, 8, 9,
0 1 2 3 4 5 6 7 8 9 10 11

|
E— — Dy = (z(2 412+ 42+ 12+ 8))F = 4.15

Sorting: 1, 4, 9, 8, 3,

~ S
.

) . e o
o 1 2 3 4 5 6 7 8 9 10 11

S e 1 1
Dy = (;(3%+5° +1° + 5"+ 22))z = 3.58

Sorting: 1, 9, 3, 4, 8,
(v

0 ™2 3.4 5 6 789 10 L

Dy = (5(6"+ 17 +4* + 7 + 87))? = 576




Sorting on a Torus

D()_s = 19.3

D, =57.7

Dy = 22.2
D, = 41.7

Dos = 26.2




Extension to higher source dimensions

® \Wrapped sorting of high-dimensional (HD) data.

® Meaningful 1D sorting is produced by minimizing D; or Dy,
i.e. the path along the points in HD.

e 2D example: Traveling salesman problem (closed-loop)

K/ <J ]




1D Torus sorting of 2D colors

Colors: R, G, B=128

Optimal paths in
terms of D;and D,

No fundamental
difference of sorting.

D> has a preference

for shorter local
distances.




1D Sorting quality

e must represent how well the optimal (sorting) order is preserved.

® Sorting quality could be defined as

D T Dsort : :
_ [—1,,1] D = mean distance of all data points
1) = D (p omitted)

® Optimal sorting — 1
Random sorting = O
(worse than random < O)

® Problem:
Dop: is difficult to determine for source dimensions > 1

— Traveling Salesman Problem



2D Grid Sorting quality

d(xy)

® For 2D target dimensions
it gets worse ...

4

v

4
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4 | 4
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v [ v
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o> > >

> 0> 0>
}

® |f Dyors is mMinimal
(average magnitude of the distances
to all 4 neighbors), then the sorting is optimal.

® Again, since the optimal 2D sorting is not known, the sorting
quality cannot be determined in the previously proposed way. :(

® \We will present a solution later in this tutorial ...



2D Image Sorting

If images are to be sorted on a grid, feature vectors are needed.

(i Feature :
> Extraction g .
n X thousands of pixels HD Feature Vectors
55 Sorting _ o
53 = Algorithm [ > 2D Grid Positions

HD Feoature Vectors



Visual Feature Vectors




Visual Feature Vectors

Representing images as vectors is essential for sorting them,
but finding universally applicable "good" feature vectors is an

ongoing research area.
Two types of feature vectors:

® Low-level feature vectors
describe visual appearance and
are effective for grouping images.

® Deep learning feature vectors
describe image content and
are useful for image retrieval.



Low-Level Feature Vectors

describe visual image
features like colors,
textures or edges.

Descriptor

Dimension
of feature
vectors

Example

Color Layout

3-192

Dominant
Color

9-24
(depending on
image)

Color
Structure

32-256

These "primitive" features often
provide poor retrieval results

due to the "semantic gap”.




Deep Learning Feature Vectors

Output

ayer . ver Layer 5
g - 13 = 13
3h 39 = =] =
3 1000
< 13 <
288 288 13

256 ‘ 1096 1096

Deep learning feature
vectors enable the
extraction of semantically
meaningful representations | o ok
from images, for tasks such as image search, similarity
comparisons, and image classification.

® 2014: Using Activations of Neural Networks: Babenko et al.,
"Neural Codes for Image Retrieval”

® 2016: End-to-End Fine-tuning for Retrieval: Gordo et al.,
"Deep image retrieval: Learning global representations for image search”

® 2018: GeM Pooling: Radenovic et al.,
"Fine-tuning CNN image retrieval with no human annotation”



Deep Learning vs Low-Level Feature Vectors
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Images sorted using deep |Images sorted using low-
learning feature vectors level feature vectors



Image Feature Vectors for

e User-friendly image overview is prioritized
over semantic separation when sorting
similar topic images or search results.

e Effective image sorting requires feature
vectors that capture both semantic and
visual aspects.

® Generating a well-structured overview
becomes more crucial as the number of
displayed images increases.




Dimensionality Reduction




Motivation for Dimensionality Reduction

® Data representation with fewer dimensions
® Data compression
® Feature extraction

® |nsight into high-dimensional data
® Visualization of HD data

® Sorting/arrangement based on similarities of
high-dimensional feature vectors or images ...

e Dimensionality reduction schemes for visualization purposes
aim to capture and preserve the inherent relationships within
the data by representing it in two or three dimensions.

e None of these schemes are grid-based.



Linear and Nonlinear Techniques

® (Scatterplot Matrix)

® Principal component analysis (PCA)

e Multidimensional scaling (MDS)

® [somap

® | ocal-linear embedding (LLE)

e t-Distributed Stochastic Neighbor Embedding (t-SNE)



Demonstration Test Sets

® Swiss Roll data RGB colors
3D

® Cube 9x9x9 RGB colors
3D

Jd 1 23Ms 677 4

Q| 2B Y 56789

01 23 &4 s 67 89

e MNIST data,
. 0 . Q1 23465667 87
images with 28x28 pixels 0 /83N (7o
Ol 3 4 ¢ 67 31

784D 0t 234954+ 84q

o 54 546> ¢

0/ 2>4d 5 6 7 879



Principal component analysis (PCA)

Optimal linear projection that maximizes the variance of the kept
dlmenSIOnS Color Space: RGB v Display Mode: All Colors v

701440 Pixels, 158960 Colors

| | | | | | | | | | | | | | | | | | | I | | TP e R B



Principal Component Analysis (PCA

1 r . r 0.8 . . . . : : : 2 el
. " o 0
. . 1
2
§ 3
0.6 1 o 4
05
» 5
o7
0.5 1 o 8
0 9
® .
) =
or 4
.
'
- 0
.
-0.5 |
10
. . )
o5 o o5 1 0.8 . . . . . A A
-0.8 -0.6 -0.4 -0.2 o] 0.2 0.4 0.6 0.8

-10 0 I 0 E)

RGB cube data & Swiss roll data



Multidimensional Scaling (MDS)

® |dea: Projection of high-dimensional data while preserving
the distances between the data points.

® [terative comparison between the spatial distance of the
projection (disparity) d* and the actual distance d.

® "Stress" value describes the quality of the projection.

N

N B

B e [3lesi

das A oc 2
d
A OC (o)

A\
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Multidimensional Scaling (MDS)

Loss Function:

— Z(“a:z — @l — |l — yj||)2

(||zs — a’J” |ys — yj||)2 S M .
H(Y) = Zwllxz " ; P— ammon Mapping
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Multidimensional Scaling / Sammon Mapping

RGB cube data &
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Isomap

e Constructs a graph representation based on the
k nearest neighbors of each data point.

e Computes geodesic distances along the graph.

e Applies multidimensional scaling to find a lower-dimensional
configuration.

| 1
T L T T RN R
2 ' 1 '

’
06— !
|




Tag=dimunsional iomap embedding (eith Raighborsd Graph); Two-dimensional Isomap embedding (with neighborhood graph).

0.8 T T T

0.2

-0.2F

-2 -1 0 1 2

swiss roll data (%) RGB cube data (%)

MNIST &



Local Linear Embedding (LLE)

® Preserves local linear relationships in the data during
dimensionality reduction.

® Reconstructs each data point as a linear combination of its
neighboring points.

® Finds weights that minimize the reconstruction error.

® Constructs a lower-dimensional representation while preserving
pairwise distances.

k
(YY) = Z(yi — Zwijyij)Q
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Local Linear Embedding (LLE)
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t-Distributed Stochastic Neighbor Embedding

Conversion of high-dimensional distances into conditional

probabilities representing similarities.

Similarities of the data points:

High Dimension: Low Dimension:
_||xi-’;j||2 o

e "7 o (1+lyi-v;l)

Pij e =]l Ui = 5 A+l
20
Dzl

Pij
Loss function € = KL(P||Q) = Ziszingq—i;

Optimization through Gradient Descent



t-Distributed Stochastic Neighbor Embedding

]
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RGB cube data © Swiss roll data & MNIST ©



Limitations of dimensionality reduction techniques

® Most algorithms are rather slow.

e Not suited for arranging images.
Due to the dense positioning of
the projected images, some
overlap and are partially
obscured.

e Only a fraction of the display
area is used.




Image Sorting




Requirements & Main Algorithms

® |n order to avoid overlapping images,
3 grid-based approach must be used.

® Each grid position may only be "occupied” by one image.
— The number of grid positions size must be = than the
number of images.

® Main Algorithms

Self Organizing Maps (SOM)

Self-Sorting Maps (SSM)

IsoMatch

"Dimensionality Reduction to Grid"

Neural networks for learning permutations



Self Organizing Map (SOM)

Kohonen's idea:

Use a low-dimensional network (grid): 28.4
3 1D, 2D or 3D map 524
- - . 53.6

of high-dimensional nodes 57.2
53.6

57.2

Adapt the nodes of the map to the
high-dimensional data

Example:
Mapping of colors to a line

3D—-1D oo oo @@
.

R
G
B




1.

Self Organizing Map (SOM)

Map each feature vector X, to ®
the map with nodes Ni(7):
Search for the best
representation ¢ for X,.

Cn(t) = argfnin(HX" _N"(t)H) y(t,d(i,cn))  N(2)

. Update the neighborhood:

N;(t+1)=N;(@®) +a®) - y(t,d@ ) Xn—N; (1))

Iterate with decreasing learning rate a and neighborhood function y



Self Organizing Map (SOM)

.....



Self Organizing Map -

For images no node may be occupied by more
than one feature vector (image).
Map size must be = than the number of images.

Algorithm 1 SOM

1: Initialize all map vectors with random values,

set learning rate o (< 1) and neighbor radius
2: while not convergence do // convergence by reducing o and radius
3: for all high-dimensional input vectors x; do
4
5

Find the unassigned map position with most similar vector m;
Assign the vector x; to this position and
update the neighbor map vectors: mj; = - x; + (1 — ) -mjs

6: Reduce o and the neighbor radius




Self Sorting Map

Algorithm 2 SSM

1: Copy all input vectors into random but unique cells of the grid
2: Divide the grid into 4x4 blocks

3. while size of the blocks > 1 do

4: Divide each block into 2x2 smaller blocks

5 for iteration = 1,2,...L do // L = maximum number of iterations

6: For each block its target vector (the mean vector of its cells
and adjacent blocks’ cells) is calculated

7: for all blocks do

8: for all cells of the block do

9: Find the best swapping permutation for the 4 cells from

corresponding positions of the adjacent 2x2 blocks by
minimizing the sum of squared differences between
the cell vectors and the target vectors of the blocks



IsoMatch

® The data is first projected into a 2D plane using the Isomap technique.

® A complete bipartite graph is created between the projection and the
grid positions. The Hungarian algorithm is applied to determine the
optimal assignment for the projected 2D vectors to the grid positions.

Input Images Target Arrangement Distance Function 2D Embedding Coarse Alignment

l= ane I
Bipartite Graph — o
Minimum Bijection Location Assignments Optimal Arrangement
B B

[]
[2]
[2]
[4]
[5]
[e]
,
[o]

o=~ ]l fl= <]~ {~]

H
13 H
alp HES




"Dimensionality Reduction to Grid"

¢ Any (non-quantized) projection can be assigned to a grid.

® A Linear Assignment Solver can be used to determine the
optimal assignment for the projected 2D vectors to the grid
positions.

e "t-SNE to grid”, ... and others are possible

Coarse Alignment Bipartite Graph Minimum Bijection Location Assignments Optimal Arrangement

I S

4 ol £ [
& o H
26 m HEN
5]




Neural networks for learning permutations

Sorting of numbers can be described by a matrix multiplication
of the number vector with a permutation matrix:

PnT =

- O O
o = O O

-0 O O
o = O O

QO O -
o O = O

QOO =
o O = O

Machine learning can be used to learn the permutation matrix.



Neural networks for learning permutations

Problems:
The permutation matrix is not differentiable.
The iterated Sinkhorn Operator can generate a differentiable

permutation matrix.

Which loss function to use?
The loss function has to assure that the permutation matrix is
3 doubly stochastic matrix and that the distance of nearby grid

elements is very small.

It does work and is very slow. But up to now, | did not manage
to achieve better results than with other schemes. :{(



Metrics for Evaluating Sorted Arrangements




User Evaluation

Metrics should reflect the sorting quality
3s perceived by humans.

Please rate some sorted arrangements of images:

https://experiment.visual-computing.com/



https://experiment.visual-computing.com/

Metrics for Evaluating Sorted Arrangements

® Mean average precision
® k-neighborhood preservation index
® Cross-correlation

e Normalized energy function



Mean Average Precision

The Mean Average Precision (MAP) is the commonly used metric
to evaluate image retrieval systems.

N
AP(g) = — Y Py(k)rely(k)  mAP = ]%/ ). AP

e MAP defines "good" sorting when nearest neighbors share the

same class.
e Often, mMAP cannot be used due to lack of class information.

¢ MAP overlooks the order of other images,
focusing only on same-class images.




k-Neighborhood Preservation Index

The k-neighborhood preservation index evaluates the
preservation of the neighborhood of the high-dimensional data
of the sorting S on the grid.

HD 2D
| N |Nk,,- ﬂNk,i

)3

N&= &

NP (S) =

Problems:

® The quality of an arrangement is described by individual values
for each neighbor size k.

® High sensitivity to noisy HD data or similar distances on the grid.



Cross-Correlation

The cross-correlation is used to determine how well the distances
of the projected grid positions A correlate with the distances of

the original vectors 0.

ces) = 3 3 (o) =) =

i=1j=1 G\ 03

Problems:
® (Cross-correlation in image arrangement prioritizes
large distance differences over small differences.
® Preserving small and large distances is crucial to preserve
similarity in image sorting.



Normalized Energy Function

The normalized energy function measures how well distances
between the data instances are preserved by the corresponding
spatial distances on the grid.

}c O(xi,x;) —A(yi,yj) ‘p :
oS (,Z“Z Y (ROr))? )
) (S) = 1~ E,(S)

Parameter p adjusts the balance between small and
large distances, commonly values of 1 or 2 are used.

g CC

o

04

The normalized enerqgy function shares the
0.2
properties and issues with cross-correlation. Ev’

0
E’ rates arrangements the same way as CC. » ©» 0% % W



A New Quality Metric




Ranking different arrangements

Please rank the three arrangements
in the order of their visual sorting quality.

Ex® 0.553 0.648 0.524
medium best worst
arrangement arrangement arrangement

*) higher is better



Rank the arrangements by their quality
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® The metrics currently in use do not reflect perceived sorting
quality well.

® Qur goal was to develop a metric that better correlates with
human perceived quality. The quality should be expressed by
3 single value, where O represents random order and 1
represents perfectly sorted arrangement.

There are two approaches in developing a suitable quality
function for grid layouts.
® The first option would be to refer to the best possible 2D
sorting. However, this approach is not applicable because the
best possible sorting is usually not known.



® The only viable way is to refer to the distribution of the high-
dimensional data.

e A perfect sorting here means that all 2D grid distances are
proportional to the HD distances.

® Depending on the specific HD distribution, it is usually not

possible to achieve this perfect order in a 2D arrangement.

HEEEEEOT HEEE |
HEEEEC HEEN |
HEEEEET EEEE @
HEREEEEC EEEE |
HEET EEEE | @
i

possible impossible
to preserve the HD order in a 2D arrangement



Neighborhood Preservation Quality

Our first Idea: Combination of the k-neighborhood preservation
indices NP« (S) into a single quality value.

The k-neighborhood preservation indices for an optimal and
random arrangements are:

k (K = number of neighbors)
NPk(SOpt) =1 E[NP(Srand)] = K

For a 2D arrangement S the Neighborhood Preservation Gain

ANPZP (8)is the difference between the actual NPx(S) values
and the expected values for random arrangements.
k k

ANPIP = ANPZP (Sopt) = 1 — ~ ANP;P (S) = max (NP, (S) — +0)



Neighborhood Preservation Gain & Quality

— impossible optimal sorting Neighborhood Preservation Quality:
— sorting S

— random sorting S_ | . | |A NP2D (S) | |p

0 < NPQ,(S) < 1

ANP2>(S)

2D
ANP?>(S_ )
0 50 100 150 200 250

0

NPQ: 0406 > _ 0.400 > 0312 > 0294 It can be seen that the order resulting

. . . . from the NPQ does not correspond

with the human perception of sorting
quality. :(




Distance Preservation

® The neighborhood preservation only focuses on correct ranking
of neighbors, neglecting the actual similarity of wrongly ranked
neighbors.

® Our proposal involves comparing the averaged distances
of the corresponding neighborhoods.

Z Zﬁxl,x] Dk Z Zﬁxl,xj

= LjeNy? Niz LjeNzD

Again we compare the average neighborhood distance with the expectation
value of the average neighborhood distance of random arrangements, which
is equal to the global average distance.

B 1 N N
E[D ( rand)] =D = N(N— 1) Zl le(xivxj)
i=1 j=




Distance Preservation Quality

Analogous to ANP,%D(S) the Distance Preservation Gain ADy is
defined as the difference between the average neighborhood
distance of a random arrangement and that of the arrangement.

ADIP = Z(5-Df®)  AD}(S) = max (= (B - D(5)),0)

The Distance Preservation Quality DPQ,(S) is defined as the

ratio of the p-norms of the distance preservation gains of the
actual arrangement to a perfect arrangement:

|AD(8))|,
PPQ(S) =" spmD) ,

0 < DPQ,(S) < 1



Distance Preservation Gain & Quality

2D
1 AD
— impossible optimal sorting D Q ( ) ” ( ) ”p
. P A HD
— random sortingS_ || D ||p
0.8 — sorting S
0.6
NPQ: 0406 >  0.400 > 0312 > 029
0.2 DPQ: 0.689 > > 0612 > 0479
0 In ADT (S . . . .
0 50 100 150 200 250

It can be seen that the order resulting from the DPQ metric is more
consistent with the human perception of sorting quality than NPQ. :)



Ranking different arrangements

The same three arrangements in the order of their DPQ.

DPQi6:™ 0.774 0.570 0.816
medium worst best
arrangement arrangement arrangement

*) higher is better



Rank the arrangements by their quality
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Human Evaluation
of Sorted Images




® User tests are necessary to determine the suitability of the
Distance Preservation Metric for describing sorting quality
compared to other metrics.

® Two types of user tests:
Preference Tests & Search Tests

® A better evaluation metric should demonstrate a
higher correlation with user scores and a
higher (negative) correlation with user search times for
finding images in the arrangements.



Evaluation of Algorithms and Metrics
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1024 RGB colors 169 traffic sign images 256 kitchenware images 400 images from the web

® The set of 1024 randomly generated RGB colors, used solely
for assessing perceived quality of sorting methods.

® The other three image sets were also used to record the time
taken to find searched images.

® These sets were chosen to represent different search scenarios
and exhibit significant differences in search speed between
sorted and random arrangements.



Evaluation of Algorithms and Metrics

Over 2000 users participated in evaluating arrangements

We used various sorting image algorithms with different
parameter settings (if applicable).

A 50 dimensional low-level feature vector was used to
describe the images.

The compared metrics included
Ej, E>, and DPQ, with varying p values.



Preference Tests

Select the sorting that you find clearer (9/16)
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Preference Test Implementation

Select the sorting that you find clearer (8/16)

® All users had to evaluate 16 pairs and decide
whether they preferred the left or the right — Fi i &b é e
arrangement. They could also state that they Hinliiar R
considered both to be equivalent.

® The number of different arrangements were 32 for the color
set and 23 for each of the three image sets, (giving 496 pairs
for the color set and 253 pairs for each image set).

® Each pair of arrangements was evaluated by at least 35 users.



Preference Test Evaluation

For each comparison of S; with §;, the preferred arrangement
gets one point. In case of a tie, both get half a point each.

Let v(S:, S;) be the points received by S; in the " out of R

comparisons between §; and §;.
Let 1 R

be the probability that S; receives a higher quality assessment
in comparison to S;, (P(S;, Sj) + P(S;, Si))=1).

The final user score for S; is defined by User Score(S ZP Si,S;)
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Metrics vs User Scores (RGB Colors)

Pearson corr. = 0.14 p-value= 4.4e-01
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Metrics vs User Scores (Image Sets)

/ Pearson correlation = 0.74, p-value= 4e-13 - Pearson correlation = 0.94, p-value= 3e-33
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Correlation of Metrics & User Scores

. . 1.0
Correlation of the metrics .
'» and DPQ, with user — X
scores for the color and i
the three image sets with =
respect to the p values g 0-0
(@]
. 5
Correlation £0.4]
(O]
for DPQ,is much higher.
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E| DPQ; p



Search Tests

Quickly click the searched images! (1/15)
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Search Test Implementation

* In the second part of the user study, the users — [x gEE=R A
had find four images in different arrangements A SgS A= ic

. . . & S

(the same as in the first experiment). 7S 0 o

& L3O 25

e

® The four images to be searched were
randomly chosen and shown one after the other.

® The search times required for each of the 23 arrangements for
the three image sets were recorded.

® Over 400 search tasks were conducted for four images in each
arrangement, ensuring compensation for variations in search

difficulty and participant abilities.



Search Times vs Metrics
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E} Pearson corr.

Search Times vs Metrics

Kitchenware
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Search Times vs Metrics

Web Images
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Correlation of Search Times & Metrics
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_ itchenware
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Correlation of Search Speed & User Score

Search speed and user score are highly correlated
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Left: the sorting that was rated the best. Right: the sorting
in which the searched images were found the fastest.



Linear Assignment Sorting




SOM Reuvisited
® The SOM assigns each input vector to the
best map vector and updates its neighbors.

® This update can be seen as blending the map vectors with the
spatially low-pass filtered assigned input vectors, where the
filter radius = neighborhood radius.

® \We propose a faster process: first copying input vectors to the
most similar unassigned map vector and then spatially filtering
all map vectors. Integral filters allow constant complexity
independent of the radius.

® Due to the sequential process of the SOM, the last input vectors
can only be assigned to the few remaining unassigned mMap
positions. This results in isolated, poorly positioned vectors.




SSM Revisited |

® To address isolated, poor assignments,
the SSM employs a four-input vector
SWapping approach.

® The best swap is determined through a brute force comparison
with 4! = 24 possible swaps between the four input vectors
and the mean vectors of the corresponding blocks.

® Due to the factorial number of permutations, using more swap
candidates become computationally complex. To overcome
this, we suggest using linear programming to search for the
optimal permutation.



SSM Revisited I

® Another issue with the SSM is its reliance
on 3 single mean vector per block,
incorrectly assuming equivalence among
positions within a block when swapped.

® The usage of a single mean vector per block can be considered
3s 3 subsampled version of the continuously filtered map vectors.

® \We propose using map filtering without subsampling, as this
dllows a better representation of the neighborhoods of the map.

® The block sizes of the SSM remain the same for multiple
iterations, this can be seen as repeated use of the same filter
radius. We propose continuously reducing the filter radius.



Linear Assignment Sorting (LAS)

e Qur proposed image sorting scheme "Linear Assignment
Sorting" combines the proposed improvements for the SOM and
the SSM and extends this to optimally swapping all vectors
simultaneously.

e [nitially all map vectors are randomly filled with the input
vectors. Then, the map vectors are spatially low-pass filtered to
obtain a smoothed version of the map representing the
neighborhoods. In the next step all input vectors are assigned
to their best matching map positions.

® Since the number of mappings is factorial, we use the Jonker-
Volgenant linear assignment solver to find the best swaps with

reduced run time complexity of O(N3).



Linear Assignment Sorting

Algorithm 3 LAS

1: Set rf=|max(W,H)- fro]| // initial filter radius (f,o < 0.5)
fr // radius reduction factor (f, < 1)

2: Assign and copy all input vectors to random but unique map vectors
3: while rs > 1do
4. Filter the map vectors using the actual filter radius ry
S: Find the optimal assignment for all input vectors
6: Copy all input vectors to the map vectors of their new positions
7: Reduce the filter radius: r¢ = r¢ - f;



Fast Linear Assignment Sorting

® | inear Assignment Sorting is a simple algorithm with very good
sorting quality. However, for larger sets in the range of
thousands of images, the computational complexity of the LAS
algorithm becomes too high.

e \With a slight modification of the LAS algorithm, very large
image sets can still be sorted.

® Fast Linear Assignments Sorting (FLAS) is able to handle
larger quantities of images by replacing the global assignment
with multiple local swaps.



Fast Linear Assignment Sorting

Algorithm 4 FLLAS
1: Set rf=|max(W,H) - fro] // initial filter radius (f,o < 0.5)
fr // radius reduction factor (f, < 1)
e // number of swap candidates

iterations =W - H /n,
2: Assign and copy all input vectors to random but unique map vectors
3. whilers > 1do
4: Filter the map vectors using the actual filter radius

5: fori=1,2,...iterations do
6: Select a random position & select n. random swap candidates
(assigned input vectors) within a radius of max(r, ng_l )
7: Find the best swapping permutation
8: Assign the input vectors to their new map positions
9: Copy the input vectors to the map vectors of their assigned positions
10: Reduce the filter radius: r¢ =r¢ - f;



Coding Example

https://qithub.com/Visual-Computing/LAS_FLAS



https://github.com/Visual-Computing/LAS_FLAS

Technical Evaluation of Image Sorting




Sorting Quality vs Run-Time

® Since the Distance Preservation Quality (DPQ1s) has shown
high correlation with user preferences, it was used to compare
various algorithms in terms of their achieved "quality" and the
run time required to generate the sorted arrangement.

® At startup, all data is loaded into memory. Then the averaged
run time and DPQi6 value of 100 runs were recorded.

® \We ensured the algorithms received the same initial order of
images for all runs.



Sorting Quality vs Run-Time: Kitchenware
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Sorting Quality vs Run-Time: Colors
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Runtime Dependence on the Size of the Image Set

——|AS
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The mean achieved
sorting quality as a
function of the
required computation
time for 256 (e), 1024
(@), and 4096 (@) RGB
random colors for

the different sorting
methods.



Sorting with Spatial Constraints




Sorting with special layout requirements

Sometimes there are special requirements for the layout of a
sorted arrangement.

® From 2D to 1D and 3D arrangements
(LAS and FLAS can easily be realized in 1D or 3D)

® Fixed positions of specific images
® Sorting on a larger map (map size > number of images)

® Non-rectanqgular grid shapes
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Fixing the Positions of Specific Images

Sometimes it is desirable to fix positions images on the map.
The approach depends on number of images and sorting type.

Sorting Layout wrapped non wrapped

Number of fixed images 1 > 1 >1

move image to |[fix the image(s) at the desired position(s)

Solution desired position and use weighted filters
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Weighted Filters

Weighted filters are needed for grids with more positions than
images and for fixed image positions. Different weights are used
for holes (0.01), normal images (1) and fixed images (10).

Instead of copying the feature vectors to the map and then
filtering, feature vectors are scaled with the weights, the scaled
feature vectors are filtered and then divided by the filtered weights.
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Non-Rectanqular Grid Shapes

® Non-rectanqular grid shapes can be achieved by extending the
shape to the bounding box.

® Map positions outside the desired shape may not be assigned
and are treated as holes.

unsorted colors map sorted colors in @ shape



Visual Exploration & Navigation




Image Exploration

e While many efforts have been made to improve visual

similarity search, there is little research for user-driven visual
image exploration.

e The FLAS method (together with an image graph) is so fast

that it becomes possible to visually explore millions of
Images.

® Navigu.net is an example of such a visual image exploration
tool.



Image Exploration Examples
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http://picsbuffet.com

Previously we proposed
picsbuffet.com

3 pyramid based image
exploration system

+ Suited for very large image sets

+ Good visualization, fast & easy navigation
- No support for dynamically changing image sets
— |Image relationships cannot be preserved with a static 2D map

ldea: Combine the idea of picsbuffet with graph-based browsing:

- Visual navigation using hierarchical image graphs


http://www.picsbuffet.com

Three different feature vectors

e Text-to-image retrieval:
CLIP feature vector

® |[mage-to-image retrieval:
Visual search feature vector

e Visual Sorting:
Low-level feature vector
describing color and texture



Our graph visualization scheme

® Subsets of images are
successively retrieved | o
from the image similarity 4 v v
graph and displayed as ‘
3 visually sorted 2D

B R g =

image map. T e e

® The map can be zoomed and dragged
to explore related image concepts.

® This approach allows an easy image-based navigation, while
preserving the complex image relationships of the graph.



Graph navigation

® Dragging images out of view leaves
an empty space on the opposite side.

® The images next to this space
indicate images of interest.

e Following the graph-edges of these
images, new Images are retrieved.

® New images are placed visually v
sorted into the empty map region. i
Positions of previously displayed 3T
images remain unchanged.

:I’



Visual navigation by zooming and dragging

o

chicken
heads

dragqing creates a dynamic image map of cached images



Try our demo: navigu.net

N/VIGU 0

Navigating A Visual Image Graph in a User-friendly way

Select
o ImageNet (1280896)

B @ Text Search Input

Filters
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Thank you for your attention!

® An article about the image sorting experiment can be found here:
https://uxdesign.cc/the-image-sorting-experiment-4ac425812eeb6

® More details about DPQ, LAS and FLAS can be found in our paper:
Improved Evaluation and Generation of Grid Layouts Using Distance
Preservation Quality and Linear Assignment Sorting,
2022, K. U. Barthel, N. Hezel, K. Jung, K. Schall
https://onlinelibrary.wiley.com/doi/full/10.1111/cqf.14718

PicArrange (i
Find your images faster
Kai-Uwe Barthel

e https://qithub.com/Visual-Computing/LAS_FLAS

-- L Find your photos faster

Kai-Uwe Barthel

: "l'-l;l'"'-l www.visual-computing.com  Our Apps:

Pl Kiano - All photos at once =


https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.14718
https://github.com/Visual-Computing/LAS_FLAS
http://www.visual-computing.com

